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The first part of this article looked at what happens when an authoritative DNS server delivers 
fragmented UDP responses to DNS resolvers using IPv6. 
 
The result from this experiment was that: 
 

Some 37% of endpoints used IPv6-capable DNS resolvers that were incapable of 
receiving a fragmented IPv6 response over UDP. 

 
As concerning as this high loss rate may be, it is not a complete picture of the brokenness of IPv6 
Fragmentation Extension Headers in today’s IPv6 Internet. This number only refers to DNS traffic, 
when fragmented UDP responses are sent from a DNS server to “visible” DNS resolvers. It would be 
useful to understand the larger picture of IPv6 Extension Header drop rate. What would be interesting 
to measure is the packet drop rate when sending fragmented packets to IPv6 end hosts. 
 
The measurements reported in RFC7872 pointed to drop rates of approximately 30% when sending 
fragmented packets towards the Alexa top 1M web servers. However, that’s moving packets in the 
opposite direction to that we are interested in. We would like to send fragmented IPv6 packets in the 
opposite direction, from a server towards end clients. 
 

Constructing the Measurement Environment 

 
Here we are using online Ad framework to enrol end hosts to conduct the experiment. This means that 
we have a limited repertoire of techniques that we can use at the end host, namely only those 
techniques we can incorporate into a scripted retrieval of a web object. The only end-to-end 
component of this experiment are the HTTP(S) sessions used for retrieval of the web objects, so we 
need to fragment the TCP packets from the server towards the end host in order to undertake this 
measurement. We would also like to perform this fragmentation without requiring a customised 
platform, so a solution using raw socket interfaces would be preferred. The approach used here was to 
set up a front end unit to the web server, and have this front end perform packet fragmentation on 
outbound packets as required.  
 
To allow the greatest level of flexibility, this front end was programmed as a IPv6 NAT. Incoming IPv6 
packets addressed to TCP port 80 or port 443 of the front end had their IPv6 and TCP headers 
rewritten as they were passed towards the back end web serve. The packet’s source address became the 
IPv6 address of the front end server, and the destination address was that of the back end web server. 
The a locally generated port number used as the source port. This port number is also used as the 
lookup in a table of active connections, so that packets received from the back end addressed to this 
NAT can have their addresses and port values translated back into packets that are to be destined to 
the original remote endpoint. 
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In addition to this NAT function, the front end performs one further task. All TCP packets passed 
across the unit from the back end to the Internet that contain a TCP payload larger than 15 octets that 
are fragmented. 

 
 
Figure 1 – Experiment Configuration 

 
Unfortunately, there are many aspects of today’s platforms that don't make this easy. We can’t use a 
regular TCP socket connection on this front end, as we are relying on a packet level interface to 
perform the necessary processing of the packet headers. 
 
The Berkley Packet Filter (BPF) drivers and the associated libpcap routines allow us the necessary 
flexibility to pull in all incoming packets into the front end process at this “raw” packet level, but it is 
not quite as easy as it may sound. Many operating systems respond to incoming TCP packets that are 
addressed to port numbers that have no associated active listener with a TCP reset (RST) packet. This 
has to be turned off. Also, many physical interface cards are now “smart” interfaces, and rather than 
sending to the BPF driver exactly the packets as received on the wire, they may join a number of 
successive packets together and present a synthetic TCP packet that is the join of these successive 
packets. This is not always possible to turn off, unfortunately. In order to ensure that TLS functions 
correctly, the DNS name of the service resolves to the IPv6 address of the front end, while the web 
server at the back end is loaded with the associated domain name certificate. 
 
Once the spurious TCP resets and the possibility of gratuitous TCP segment joins are accommodated 
in the code we can now move on to the experiment itself. 
 
The IPv6 specification requires that a conformant IP network path be capable of passing an IPv6 
packet of up to 1,280 bytes without requiring packet fragmentation. What it fails to specify is the 
minimum fragmented packet size that an end host can receive. It appears that we can fragment almost 
any packet, irrespective of its size, and that implies we can fragment small packets as well as large ones. 
Conveniently, over at the receiver, the TCP stack will be unaware of any packet fragmentation that may 
have occurred. Packet fragmentation and reassembly is an IP layer function, and TCP is a byte 
streaming protocol. This means that our NAT unit can perform both packet fragmentation and TCP 
re-sequencing as required and the packet transforms applied by this unit will be invisible to the remote 
TCP process. 
 
The function of this NAT unit can be described in a small set of rules: 
 

• For TCP packets received from the Internet, if a translation table exists that maps the triplet of 
the source address, source port and destination port in the packet to a local port value, then 
replace the source address of the packet with the local host source address, replace the 
destination address with that of the back end, replace the source port with the local port 
address and send the packet out to the back end. If no translation table exists, and the packet 
contains a TCP SYN flag, take the oldest translation table entry and re-use the local port value. 
Otherwise drop the packet. 

 

• For TCP packets received from the back end, the processing is similar. The source and 
destination port is used to look up the translation table. If a translation table entry is found, 
then the packet’s destination address and destination port is replaced with those contained in 
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this entry, and the source address is replaced with the local address. If the packet length is 
greater than the interface MTU then the received TCP packet is broken into a number of 
outbound TCP packets, each with a size less than or equal to the interface MTU setting. If an 
outbound TCP packet has a payload length is greater than 8, then the packet is fragmented as 
well. The sequence of fragmented packets is then sent.   

 
The subsequent data analysis phase unit can detect if the end host has received and successfully 
reassembled the set of fragments by looking at the front end’s packet capture log. Where an incoming 
TCP ACK number has an ACK sequence number that encompasses the sending sequence number of  
outbound fragments within the same TCP session, then we have evidence that the remote end has 
successfully reassembled the fragmented packet. 

How “real” is this Experiment? 

 
Before looking at the results, it may be useful to ask whether this experiment represents a “real” 
scenario that is commonly encountered on the Internet. 
 
It’s certainly the case that in TCP over IPv6 we do not expect to see packet fragmentation.  
 
A TCP sender should ensure that all outbound TCP segments fit within the local interface MSS size, so 
in the absence of network path MTU issues a sender should not be fragmenting outbound TCP packets 
before sending them.  
 
What about the case where the path MTU is smaller than the local interface MTU? When a packet 
encounters a network path next hop where the packet is larger than the next hop MTU, then the IPv6 
router constructs an ICMPv6 Packet Too Big message, noting the size of the next hop, and also 
including the original packet headers as the payload of this ICMPv6 message. It sends this ICMPv6 
diagnostic message back to the original sender, and discards the original packet. When a sending host 
receives this ICMPv6 message it also has the TCP packet header. This information can be used to find 
the TCP control entry for this session, and the outbound MSS value of this TCP session can be 
updated with the new value. In addition to the updated size information, the TCP header in the 
ICMPv6 message payload also contains the sequence number of the lost packet. The sending TCP 
process can interpret the ICMPv6 message as an implicit NACK of the lost data, and resend the 
discarded data, using the updated MSS size. Again, no packet fragmentation is required.  
 
 

All this sounds like a blatant case of “layer violation” and we should 
call in the protocol police. But before you do so, maybe you should 
think about the hypothetical situation where the host did not pass the 
Packet Too Big message to the TCP control block.   
 
This is analogous to the case where the ICMPv6 Packet Too Big 
message is not passed to the host at all, where, for example, some 
unhelpful piece of network filtering middleware is filtering out all 
ICMPv6 messages. 
 
In this case, the sending TCP session has sent a TCP segment and is 
waiting to receive an ACK.  The receiver will not get this packet, so it 
cannot ACK it. The sender might have a retransmission timer and it 
might try to resend the offending large packet, but that too will get lost, 
so it will never get the ACK. 
 
This results in a wedged TCP state, or a Path MTU Black Hole 
condition. 
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Hiding ICMPv6 Packet Too Big messages from the TCP controller, 
either because of local processing rules within the host or because 
some network element has decided to drop them, is invariably harmful! 

 
 
In that sense, we have constructed a somewhat “unreal” experiment, and we should not expect to see 
applications that critically depend on the correct working of packet fragmentation in TCP experiencing 
the same network conditioned as those we’ve set up here. 
 
On the other hand, fragmentation is an IP function, not a function performed by an end-to-end 
transport protocol, and the question of whether a host can receive a fragmented UDP packet is 
essentially the same question as whether a host can receive a fragmented TCP packet, at least from the 
perspective of the host itself. In both cases the real question is whether the IPv6 process on the host 
can receive fragmented IPv6 packets.  
 
So while the experiment itself uses conditions that are essentially an artifice, the result, namely the 
extent to which IPv6 Extension Header drop occurs when passing fragmented IPv6 packets towards 
end hosts, is nevertheless a useful and informative result. 
 

Results 

 
Over the period from the 11-22 August 2017, this experiment presented fragmented TCP packets to 
1,702,949 unique IPv6 addresses.  The results are summarized in Table 1. 
 

 Count % of Total % of Frags 

IPv6 Addresses 1,720,949   

Did not Complete TCP Handshake 42,406 2.46%  

Did not proceed with HTTP(s) 2,645 0.15%  

Sent Fragmented TCP Packets 1,675,898 97.38%  

    

Acknowledge Fragmented TCP Packets 1,324,834 76.96% 79.03% 

Failed to Acknowledge Fragmented TCP Packets 351,514 20.43% 20.97% 

 
Table 1- Results of Fragmentation Test 

 
Compared to the earlier DNS packet fragmentation result, namely that some 37% of endpoints who 
used IPv6-capable DNS resolvers used resolvers that were incapable of receiving IPv6 Fragmentation 
Extension Headers, the overall failure rate observed here of some 20% looks somewhat better.  
 
However, what it does indicate is that some one fifth of IPv6-capable endpoints are unable to receive a 
fragmented IPv6 packet. In TCP this may not be a major issue, but for UDP-based applications, and 
the DNS sites first and foremost as a UDP application where large packet responses are common, 
having one fifth of the end user population being incapable of receiving fragmented large responses 
over IPv6 is indeed a serious problem.  
 
Of course, whenever you talk about an “address” in IPv6 it is often hard to map such an address into a 
unique end point. Many end points use IPv6 privacy addresses, and, over the 11 day period of this 
experiment a single end point may have been seen using a number of /128 addresses. 
 
It may be a little coarse, but what if we look instead at the number of /64 unique prefixes seen by this 
experiment? 
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 Count % of Total % of Frags 

IPv6 /64 prefixes 351,122   

Did not Complete TCP Handshake 10,615 3.02%  

Did not proceed with HTTP(s) 501 0.14%  

Sent Fragmented TCP Packets 340,006 96.83%  

    

Acknowledge Fragmented TCP Packets 258,247 73.62% 76.02% 

Failed to Acknowledge Fragmented TCP Packets 81,527 23.22% 23.98% 
 
Table 2- Results of Fragmentation Test per unique /64 prefix 

 
This does make that much of a change to the observation. The failure rate rises to some 24% of the 
/64 prefixes that are sent fragmented packets. 
 
The next question is whether this failure behaviour is even spread across the network, or whether there 
are higher rates seen in certain networks than others. To generate this data we filtered out the Teredo 
and 6to4 prefixes where the end user is behind a tunnel, and looked at the remainder.  
 
But before we do let’s look briefly at Teredo and 6to4 themselves, as in the IPv6 Internet these two 
auto-tunnelled IPv6 bridging technologies just don't seem to want to die! 
 

 Teredo % 6to4 % 

IPv6 prefixes 59,923  27,246  

Did not Complete TCP Handshake 5,944 9.9% 2,785 9.9% 

Did not proceed with HTTP(s) 199 0.3% 77 0.3% 

Sent Fragmented TCP Packets 53,780 89.7% 24,384 89.5% 

     

Acknowledge Fragmented TCP Packets 263 0.4% 1,486 5.5% 

Failed to Acknowledge Fragmented TCP Packets 53,517 89.3% 22,898 84.0% 

 
Table 3- Results of Fragmentation Test for Teredo and 6to4 prefixes 

 
Both of these auto-tunnelling services are atrocious in this respect! 10% of end points cannot even 
complete a TCP handshake. Of those that do, almost no Teredo end points can handle IPv6 
fragmentation, and the 6to4 failure rate is not much better. Having no IPv6 at all is far better than 
having such a terrible service, and I can think of few better justifications for turning off the remaining 
Teredo and 6to4 gateways than these figures! What is even more depressing that these two auto-
tunnelling technologies represent one quarter of the count of unique /64 prefixes seen in this 
experiment. 
 
The remaining 263,953 /64 prefixes are advertised from just 321 networks (using BGP’s originating AS 
to associate a prefix with a network). In 186 cases we saw only a single sample point from the network, 
and if we rank these originating AS’s by the unique /64 sample rate, across the 11 days of the 
experiment we only 25 originating AS’s had 28 or more samples. This is partially due to the ad network 
placement algorithm, and partially due to the relatively small number of networks which have 
significant levels of IPv6 deployment. 
 
In any case, these 25 largest IPv6 networks in terms of sample count are shown in Table 4 below. 
 
 

Rank AS Samples Failure Fail Rate AS Name 

1 55836 246,302 3,461 1.40% Reliance Jio, IN 

2 55644 4,680 35 0.70% Idea Cellular, IN 
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3 45271 2,769 30 1.10% ICLNET-AS-AP, Idea Cellular, IN 

4 7922 1,593 417 26.20% Comcast Cable, US 

5 4818 1,165 25 2.10% DiGi Telecommunications,  MY 

6 18101 696 29 4.20% Reliance Communications, IN 

7 9644 683 0 0.00% SKTELECOM-NET-AS, SK, Telecom, KR 

8 8708 340 183 53.80% RCS-RDS, RO 

9 29247 305 7 2.30% Cosmote, Mobile,  GR 

10 55441 215 1 0.50% TATA-DOCOMO-AS-AP, IN 

11 21928 168 1 0.60% T-Mobile, US 

12 15169 161 161 100.00% Google, US 

13 20057 99 4 4.00% AT&T Mobility, US 

14 7018 94 15 16.00% AT&T Internet Services, US 

15 19782 76 70 92.10% Indiana, University, US 

16 25820 66 0 0.00% IT7 Networks, CA 

17 22394 60 47 78.30% Cellco, Verizon Wireless, US 

18 13124 58 46 79.30% IBGC, BG 

19 16276 57 6 10.50% OVH, FR 

20 38466 55 3 5.50% U, Mobile, MY 

21 18881 54 19 35.20% TELEFONICA, BR 

22 1257 45 2 4.40% TELE2, SE 

23 24940 45 19 42.20% HETZNER-AS, DE 

24 109 30 17 56.70% Cisco Systems,  US 

25 23910 28 19 67.90% Next Generation Internet, CERNET2, CN 

 
Table 4 - Results of Fragmentation Test by Origin AS 

 
There is a considerable level of variation in the extent to which networks support the delivery of IPv6 
Fragmentation Extension Headers to hosts. In some cases, it appears that the choice of customer 
premises equipment, or the configuration of IPv6 firewalls, may be a factor. Where the failure rate is 
very high it would point to the drop point being part of the behaviour of the provider network rather 
than the behaviour of the customer premises equipment. 

Conclusion 

 
Whatever the reasons, the conclusion is here is unavoidable: IPv6 fragmentation is just not a viable 
component of the IPv6 Internet. 
 
We need to adjust our protocols to avoid fragmentation. 
 
For TCP, this should not be a major issue. Of course, this assertion relies on ICMPv6 Packet Too Big 
messages getting back to the sender’s TCP process, but that is a major topic in its own right, so we 
won't delve deeper into this right now. 
 
However, for UDP, this should be cause for some major re-thinking of the way the DNS works, as the 
combination of DNSSEC, UDP and IPv6 is really not going to work very well. However, it has 
implications for other UDP-based protocols as well, particularly where the protocol can generate large 
payloads. 

 
QUIC has taken the pragmatic position of using a maximum packet size of 1,350 octets as a universal 
base, and does not expect to encounter fragmentation issues given this somewhat conservative choice. 
If the DNS over IPv6 used a similar ceiling UDP size, and always sent back truncated responses for 
larger answers we could probably avoid many of the packet loss problems that we encounter today. Of 
course, the larger use of TCP has its own implications in terms of query processing capacity for DNS 
resolvers and servers, so there are no free points here. 
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As I observed in respect to the analysis of IPv6 fragmentation loss in the DNS, maybe we should bow 
to the inevitable and recognise that, in IPv6, fragmentation is an unfixable problem. 
 

This is not a new thought, and it is best described in recent years in a 
now-neglected four year old Internet draft “IPv6 Fragment Header 
Deprecated”. 
 
Perhaps this draft was just slightly ahead of its time, but our experience 
in conducting these measurement experiments indicate that like it or 
not, our operational IPv6 Internet has effectively deprecated IPv6 
Fragment Extension headers.  

 

 

 

 

 

  

https://tools.ietf.org/html/draft-bonica-6man-frag-deprecate-01
https://tools.ietf.org/html/draft-bonica-6man-frag-deprecate-01
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